Dioxane biodegradation by mycobacterium dioxanotrophicus pH-06 is associated with a group-6 soluble di-iron monooxygenase.
Dioxane biodegradation by mycobacterium dioxanotrophicus pH-06 is associated with a group-6 soluble di-iron monooxygenase.
Author(s): HE, Y.; MATHIEU, J.; YANG, Y.; YU, P.; SILVA, M. L. B. da; ALVAREZ, P. J. J.
Summary: ABSTRACT: 1,4-Dioxane (dioxane) is a groundwater contaminant of emerging concern for which bioremediation may be a promising strategy. Several bacterial strains can metabolize dioxane or degrade it cometabolically. However, the molecular basis of dioxane biodegradation is only partially understood, and the gene coding for dioxane/ tetrahydrofuran (THF) monooxygenase in Pseudonocardia dioxanivorans CB1190 is the only well-characterized catabolic gene. Here, we identify a novel group-6 propane monooxygenase gene cluster (prmABCD) in Mycobacterium dioxanotrophicus PH-06, which is a bacterium with superior dioxane degradation kinetics compared with CB1190. Whole genome sequencing of PH-06 revealed the existence of a single soluble di-iron monooxygenase (SDIMO). RNA sequencing and reverse transcription quantitative PCR (RT-qPCR) subsequently confirmed that all four components of this gene cluster are upregulated when PH-06 is grown on dioxane compared with growth on acetate or glucose as negative controls. This first characterization of a group-6 SDIMO associated with dioxane biodegradation suggests that dioxane-degrading genes may be more diverse than previously appreciated. A primer/probe set designed to target the large hydroxylase subunit of this gene cluster exhibited high selectivity (no false positives) and high sensitivity (detection limit = 3000−4000 gene copies/mL culture), which may be useful to help assess the presence of dioxane degraders at contaminated sites and minimize false negatives.
Publication year: 2017
Types of publication: Journal article
Unit: Embrapa Swine & Poultry
Keywords: Biodegradação de dioxano, Microbactéria
Observation
Some of Embrapa's publications are published as ePub files. To read them, use or download one of the following free software options to your computer or mobile device. Android: Google Play Books; IOS: iBooks; Windows and Linux: Calibre.
Access other publications
Access the Agricultural Research Database (BDPA) to consult Embrapa's full library collection and records.
Visit Embrapa Bookstore to purchase books and other publications sold by Embrapa.